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ABSTRACT 

The soluble subgroups of maximal order of the symmetric, alternating, general 
and special linear groups are determined. Usually, they constitute just one 
conjugacy class. There are, however, infinitely many exceptions. 

In this paper we find the soluble subgroups of maximal order of the symmetric, 

alternating, general linear and special linear groups (over finite fields). For the 

linear groups these generally turn out to be the Borel subgroups, i.e., the 

subgroups that can be written as the set of all triangular matrices, while for the 

permutation groups, the subgroups we find can be described as the result of 

packing S4's, and also S~'s, as densely as possible. One interesting corollary of 

this determination is that the soluble subgroups of maximal order (of the groups 

in question) usually constitute just one conjugacy class. However, the linear 

groups over small fields provide us with infinitely many exceptions to this rule, 

and also show that the number of classes of our subgroups need not be bounded. 

We mention that Y. Segev has carried out a similar investigation for the 

remaining Chevally groups, again finding that the soluble subgroups of maximal 

order are the Borel subgroups, excepting some fields [7]. 

The problem arose originally in connection with a factorization problem. 

Z. Arad and E. Fisman [1] have determined the simple groups that are products 

of two subgroups of co-prime order, and have asked about factorizations as 

products of two soluble subgroups. During the A. Gelbart Symposium at 

Bar-Ilan University in 1983, D. Gorenstein suggested attacking this problem by 

considering the maximal order of soluble subgroups of simple groups. Such an 

application is indeed possible, and will be discussed elsewhere [2]. However, we 
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consider the discussion of the soluble subgroups of maximal order of finite 

groups as a problem of independent interest, and it may be interesting to 

compare our results to results regarding nilpotent subgroups of maximal order 

[3, 4]. The maximum order of a soluble permutation group has already been 

discussed by Dixon [5]. 

Since we have mentioned general finite groups, let us note the following: 

Suppose G is a finite group and N<~G. Assume that in N, any class of soluble 

subgroups of maximal order is also a class of G. Then both the maximal order of 

a soluble subgroup, and the number of classes of such maximal subgroups, in G, 

are the products of the corresponding numbers for N and G/N. Our results show 

that the conditions required from N are always fulfilled if N is a symmetric, 

alternating, general linear or special linear group, with one single exception. The 

group SL(2, 7) has two classes of soluble subgroups of maximal order, this order 

being 48. But in the containing group GL(2,7) there is only one such class (the 

Borel subgroups) and the maximal order is 252. 

For discussions about the contents of this paper the author is grateful to 

M. Herzog, Z. Arad, A. Bialostocki, and in particular Y. Segev. 

1. The symmetric and alternating groups 

Let s(n) be the maximal order of a soluble subgroup of Sn, and let L, denote 

any soluble subgroup of Sn of order s(n). (Thus L. is a "generic"  notation, in the 

sense that L, stands for any one of a given family of subgroups. The notations 

Hn, K., J, below are used in the same way.) 

Write n = 4k + r, 0 ~ r =< 3. Denote H, = S4wr Lk x S,. (Again, the notation is 

"generic";  the exact subgroup Hn depends on the way we divide the set 

{l . . . . .  n} into k quadruples and one r-tuple, and the choice of Lk. We shall not 

repeat this type of remark for K. and Jn.) 

Let K~= S3wr S2, and, for n > 6 ,  K. = H,  ~x K~. Also, J ,  = S~wrS~, and, for 

n>9,  Jn=Hn_~xJg. 

THEOREM 1. The subgroup Ln is of type Hn, with the following exceptions: 
(a) If n - 6 (mod 16), then L, is of type Kn. 
(b) If n = 9 (mod 16), but n~ 25 (mod 64), then L. is of type J,. 

COROLLARY 2. All soluble subgroups of maximal order of S. are conjugate. 

This is immediate. 

PROOF. We first prove, by induction on n, that L = Ln is of one of the types 

H . ,K .  or Jn. Later we will sort out the exact type. 



164 A. M A N N  Isr. J. Math. 

Case I. L is intransit ive.  Suppose  L leaves invariant  two c o m p l e m e n t a r y  

subsets ,  of l and m ciphers,  where  n = l + m. Let  L induce on these subsets  the 

g roups  Lt and L,.. By maximal i ty ,  L = Lt x L,., and L, and L,. are indeed (as the 

nota t ion  implies)  soluble subgroups  of maximal  o rder  of St and S,., so we can 

apply  induct ion to them.  Wri te  l = 4p + s, m = 4q + t, with 0-< s, t --_< 3. 

Subcase Ia. Both  Lt and L,. are of type H. We c o m p a r e  the o rders  of 

L = H, x H m  and /4.. 

[H,×H,.[=24"+qs(p)s(q)s!t!, In . l=24ks(k)r !  

Here  k = p + q + l  if the pair  {s,t} is one of {1,3}, {2,2}, {2,3}, {3,3}, and 

k = p  + q otherwise .  T h e r e f o r e  s(p)s(q)<-<_ s(k). Using this, and compar ing  the 

powers  of 24 and s!t! and r! ,  we see that  I L l <  I H . I  (which is a contradic t ion) ,  

unless k = p + q, s ( k )  = s(p)s(q), and one  of s,t is 0, say s = 0 and t = r. T h e n  

L,  × Lq is an L~, so 

L = L~ x L,. = H~ x H,. = $4 wr (L,  x L, ) x S, = $4 wr Lk x S, = H..  

Subcaselb. L~ is of type H and L., is of type K (or J) .  Then  L t x L , , =  

Ht x H,._,  x K,.  The  maximal i ty  implies Ht x H,._~ = L~+,._,, which by the previ-  

ous case impl ies /4 ,  x H,,_,  = H._~ and L. = K,. Similarly, if L,. is of  type J, so is 

L. 

Subcase Ic. None  of Lt and L,. is of type H. Then  L~ x L,. involves a factor  

K ~ x  K~, K 6 x  J~ or J~x  J~. It is easy to check that  these three  subgroups ,  

however ,  have  orders  less than H,2, Hts and H,~, respect ively,  so this case cannot  

o c c u r .  

Case II. L is t ransit ive but imprimit ive.  If L has a system of imprimit ivi ty  

consist ing of m subsets  of l e l ements  each,  then  n = lm and L = Lt wr L,.. Since 

L is transit ive,  so are L~ and L,.. The re fo re ,  by the inductive hypothesis ,  e i ther  

411 and L~ = / / i ,  or  Lt = S.,$3,K6 or J,.  Similarly for  L,.. 

Subcase IIa. 4]/  and L, = Hr. H e r e  H, = S4wr L . , ,  so 

L = ($4 wr L.4) wr L,. = $4 wr (L.4 wr L,. ). 

By maximal i ty ,  L.4 wr L,. = L./a, so L = / 4 . .  

Subcase lib. 4 X l, 41 m. H e r e  L,. = $4 wr L,./4 and L = (L~ wr S,) wr L.,/~, 

where  L~ is $2,$3,K~ or  J, .  In all four  cases we obta in  the contradic t ion  

It ,  wrS , [<ln4 ,  l ( =  ISawr Lt I). 

Subcase llc. 4 X l, 4 X m. H e r e  both  Lt and L,. are one of $2, $3,/(6 and J~. 

He re  we have  $3 wr S, = K~, S~ wr $3 = J , ,  and in all o the r  cases L~ wr L,. is not of  

maximal  order ,  by 
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IS,_wrS21<IS4], IS2wrS31=48<lS3wrS21=72, 

IS~_wr K, l = IS2wr S3wr S21< IS3wr SEwr S,_J, 

IS2 wr AI = [S2wrS3wrS~l<l&wrS2wrS. ,I ,  

IS wr = IJ wr s_,l < f n, l, 

I s3 wr  J,I = I1, wr < I H2,], 

IK~wr  S.,I = tS3wr S, wr S21 < [S, wr S4[, 

[K~ wr S, l=]S,  wr S2wr S, I<IS,  wr S, wr S2r, 

I K.  wr K~I = I S~ wr $2 wr S, wr $2 ] < ! $3 wr $3 wr $2 wr $2 I, 

IK, wr J, l<IS3wr S, wr S2wr S31, 

rJ~wrK~l<lH27wr&l, IJ~wrJol<lH27wrS31. 

Case III. L is primit ive.  Let  M be a minimal  normal  subgroup  of L. Then  

I M I  = n = p e ,  for  some  pr ime p, and L contains  a subgroup  A such that  

L = MA, M t3 A = 1, and CL ( M )  = M [6, III.3.2].  We  can view M as a vec tor  

space  over  GF(p ) ,  and then A C_ G L ( e , p ) ,  so 

ILl = [MI IA I<=pep :'= n e+' 

while 

s(n ) >= I/4. I = 241"/~lr!s([n/4]) >= 2#"-2)/4s([n/41) >- 24("+'-)/4, 

provided n _-> 16. H e r e  e = Iogpn =< log_n, and it can be checked  that  

n '''~-'"+' _-< 24 ~"+2)n for all n => 16, 

so we get a contradic t ion.  Similarly, for all pr ime powers  n = pe be tween  4 and 

16 we see that  nlGL(e,p)[ < IH .  I, except  for n = 8, but in that  case we note  that  

A, a p rope r  subg roup  of GL(3 ,2) ,  has o rder  24 at most ,  and [L I -< 192 < I Hxl. 

Thus  L is pr imit ive only for  n < 4 ,  when L = S. = H..  

We  have  by now proved  that  L.  is indeed one o f / 4 . ,  J., K.. To  comple te  the 

p roof  of T h e o r e m  1, we have  to c o m p a r e  the orders  of these three  subgroups .  

Wri t ing n = 4k + r, these o rders  are  displayed in Tab l e  1. 

Using the obv ious  inequali t ies  s (k) >= s(k - 1), s (k) >= 2s(k - 2) we see that  

I n .  1> I g .  I for  r ~ 2 ,  JH.  I >  IJ.  [ for  r ~  1, IJ.  1 = 31K. j for  r = 1, and I g . l >  I L l  

for  r = 2. Thus  L.  = H .  for  r = 0,3,  L. is H .  or  J.  for  r = 1, and is H .  or  K.  for  

/ ' = 2 .  
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TABLE 1 

r /4. K. J.  

0 ) 7 2 . 2 . 2 4  k Zs(k-2)=6.24~-'s(k-2) 
24~s (k)  

1 72.6 .24k-2s(k  - 2 ) =  18 .24k- ' s (k  - 2 )  1 

2 2 ,24ks (k)  } 
72"24" - ' s (k  - 1 )=  3"24~s(k - 1) 

3 6"24ks(k)  

6 ~ . 6 . 2 4  ~-~s(k -3) 
= 324.24~-- 's(k - 3) 

6 ~. 24k-2s(k - 2) 
= 54 .24~- ' s (k  - 2) 

6 ' .  2.24k-2s(k - 2) 
= 108.24 k 's(k -2) 

We start with r = 2. Then  I H ,  1/1K, [ = ] .  s(k)/s(k - 1) so we want to compare  

s ( k ) / s ( k - 1 )  with ~. Write  k = 4 l  +s ,  with 0=<s---3.  

If s = 0, then we already know that Lk = Hk, Lk-, = Hk_,, and Table  1 shows 

that  

s(k) = 4 ~ > 4 "  
s(k - 1) s ( l -  l ) -  

Thus L, = / 4 , .  

If s = 1, then Lk-i = Hk-, while Lk is Hk or J~. In the first case s(k) = s(k - 1), 

and in the second 
s(k) 54 s ( l - 2 ) < 9  1 3 

s (k -1 )=2- - ' 4 "  s ( l ) = 4 " 2 < 2  

so L.  = K.  in both cases. 

For  s = 2, Lk-~ is Hk-i or  Jk-~, and we have just seen that IJk-, I =< ]1Hk-, I, so, in 

any case, 

and L, = H,.  

Finally, for  s = 3, Lk 

[Kk_ll =< ~[nk_,[, so 

s(k). > IHk[ > 8 {H, I 16 
s(k - 1) = I Lk-,I---91Hk-,  I = - 6  

is Hk, Lk-, is Hk-, or Kk-,~ and Table  1 shows that 

s(k) > 2  IHkl - 2 .  
s ( k - 1 ) = 3 i H k _ , l  - 

Again L. = H.,  and we see that L.  = K,  precisely for s = 1, i.e. n - 6 (16). 

Now let r = 1. We again write k = 4l + s, and we are interested in 

IH.[=4_. s ( k ) = 4 ,  s ( k ) . s ( k - 1 )  
]Jr.[ 9 s ( k - 2 )  9 s ( k - 1 )  s ( k - 2 ) "  

We have to compare  s ( k ) / s ( k - 2 )  with ~. 
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If s = 0 or  1, then f rom the calculat ions we made  for  case r = 2, we know that  

e i ther  s ( k ) / s ( k - 1 )  or s ( k - 1 ) / s ( k - 2 ) > - _ 4 ,  while for  s = 3  we have  

s (k)/s (k - 1) _-> 2 and s (k - 1)/s (k - 2) _-> ~. In all these cases s (k)/s (k - 2) > 2, 

so L~ -- Jn is possible,  if at all, only for s -- 2, i.e. n ---9 (16). 

Let  s = 2 .  Then  Lk is e i ther  Hk or Kk, L~_~ is e i ther  Hk-~ or J k . ,  and 

Lk _~= Hk-z. If Lk = Hk, then s (k) / s (k  - 2 ) = 2 .  If Lk = Kk, then k - - 6  (16), so 

I -- 1 (4) and 

s(k)  ~ _ K~_J 3 s ( l - 1 )  
s ( k - 2 ) = ) H k , l = Z l H k ) = 2 " - 2 "  s(I) 

Here  s(l - l)  = I/-/1_, I = I HI I, so s(l - 1)Is(l)  = I if L, = Ill, but if L, = Jr, then we 

a l ready know that  s(I - l ) / s ( t )= H~/J~ =~.>~ so s (k ) / s (k  - 2 )  > ~'~ ~ = ~ / ~ in bo th  cases. 

Again L, = H,. Not ing that  r = 1, s = 2 and k -= 6 (16) is the same as n ~ 25 (64), 

the p roof  of T h e o r e m  1 is finished. 

THEOREM 3. Let R be a soluble subgroup of maximal order of A..  Then 
R = An f) L, for some soluble subgroup of maximal order L of Sn. 

PROOF. Note  that  I R I >= ~ s(n). First, assume that  R is intransit ive,  and write 

n = l + m, where  R fixes subsets  of sizes l and m. Let  RI, R,. be the pro jec t ions  

of R on these subsets.  If R~ and R,, contain only even permuta t ions ,  then, by 

induction,  ] R, ] <-<_ ½ s (l) and ] R,, ] =< ½ s ( m )  (L° always contains  odd pe rmuta t ions )  

so ] R [ <= ¼s(l)s(m ) < '  = ~ s(n), a contradict ion.  Thus  Rt x R,, contains  odd p e r m u -  

tations. But  then R is a p rope r  subgroup  of this p roduc t  so 

tR  I<=½1R, x R,, ]<=½s(l)s(m)<=~s(n) 

with equal i ty possible only if R~ x R,, = L,, and R = L. f-1 A,.  

Next ,  if R is t ransi t ive but  imprimit ive ,  we write n = lm, R C_ Rt wr R,,, and 

p roceed  in exact ly the same  way as in the intransit ive case. So we may  assume 

that  R is primit ive.  As  in the p roof  of T h e o r e m  1 (Case I I I )  we write R = MA,  
with I M I  = n = p "  and IA I C  GL(e ,p ) .  We noted ,  in the proof  of  T h e o r e m  1, 

that  I R l < = n l G L (e , p ) l < s (n ) ,  except  for  n=<4 and n = 8 .  If A is a p rope r  

subgroup  of G L ( e , p ) ,  we get actually I R l < ½ s ( n ) ,  which gives a contradic t ion 

also in the presen t  case. Similarly, for n = 8  we have IR I < 192, ½s(8 )=576 .  

The re  remains  the possibili ty A = G L ( e , p ) .  This may  occur  for  e = 2, p = 3, 

when n l G L ( 2 , 3 ) l = 9 . 4 8 < ½ s ( 9 ) = 6 4 8  , or  for  e = 1. But  for  e = 1, n = p  is 

pr ime,  and GL(1,  p )  contains  a cycle of o rder  p - 1, which is an odd  pe rmuta t ion ,  

so A is again a p rope r  subgroup.  

COROLLARY 4. All  soluble subgroups of maximal order of A ,  are conjugate. 
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2. Linear groups 

The natural approach here is, in analogy to the discussion of permutation 

groups, to distinguish between reducible, imprimitive and primitive groups, and 

for the last ones to replace Galois' theorem on soluble primitive permutation 

groups by Suprunenko's detailed description of soluble primitive linear groups 
[9]. However,  Suprunenko's results have been employed already by Wolf [10] 

and Segev [8] to derive inequalities for the orders of completely reducible 

soluble linear groups, and we quote rather those results than Suprunenko's, 

except for small values of n and q, where more care is necessary. 

We denote by 7", -- T, (q )  the subgroup of GL(n,q)  consisting of all triangular 

matrices, or any subgroup conjugate to it. 

THEOREM 5. Let S be a soluble subgroup of maximal  order of GL(n,q)  for 

q >- 7 or q =4.  Then S is of type T.. 

PROOF. First, let S be reducible. Then the elements of S can be put in the 
form (A ~), where A and B are square matrices of sizes l and m, with n = l + m. 

By induction, we may assume that A and B lie in Tt and Tin, and then S _C 7",. 

Now let S be irreducible. We aim to derive a contradiction. By Wolf's result 

referred to above, IS I< q,,,4, while [ T. [ = q'~'(q - 1)". Since q - 1 > q3/4 we get 
I T , [ > q  ""-''/2+3m", and ½n +-~_->~ for n =>4, so I S I < [ T . I .  Thus n = 2  or 3. 

Now if S is imprimitive, then S = F* wr S,, where F* is the multiplicative 

group of the underlying field, so I SI = 2(q - 1) 2 for n = 2, and IS I = 6(q - 1) 3 for 
n = 3 ,  b u t Z ( q - 1 ) 2 < q ( q - 1 )  2 and 6 ( q - 1 ) 3  < q 3 ( q - 1 )  3, so l S l < [ T . [ .  

Thus S is primitive, and we apply Suprunenko's result, which shows that 

either IS I= n(q" - 1) or J SI = (q - 1)n2[Sp(2, n)l. Again, we easily check that 

2(q  2 -  1)<  q(q - 1) 2, (q - 1). 2 z. 1Sp(2,2)1 = 24(q - 1)< q(q - 1) 2 (for q ~ 7), 

3(q 3 - 1 ) < q 3 ( q - 1 ) 3  and ( q - l ) - 3 2 . ] S p ( 2 , 3 ) l = 2 1 6 ( q - 1 ) < q 3 ( q - 1 ) 3 .  

For q = 4, 24(q - 1) = 72 > 36 = 4.32, but the proof still holds, because actually 

there is no subgroup of order 72 of GL(2 ,4 )~  Z3 x As. 

For q = 2,3,5 Theorem 5 is false. Thus, GL(2,2) and GL(2,3) are themselves 

soluble, while GL(2,5) has a subgroup of order 9 6 >  80 = ]T2(5)1. For these 

exceptional values, let us denote by U2 the subgroup GL(2,2), GL(2,3) or the 

one of order 96 in GL(2,5) (this is unique up to conjugacy). For n >= 3, let U, be 

the subgroup of block triangular matrices 0) 
° ° °  , 

Ak 
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where each Ai is of size 2 × 2 if n is even, while one is of size 1 × 1 and the others 

2 × 2 if n is odd, and Ai E U2. As usual, a subgroup conjugate to U, will also be 

denoted by U,. 

THEOREM 6. For q = 2,3,5, each soluble subgroup S of maximal order of 

GL(n ,q )  is of type U,. 

COROLLARY 7. If either q#  2,3,5 or n is even, GL(n ,q )  has just one class of 
soluble subgroups of maximal order. For q = 2,3,5 and n odd, there are ~(n + 1) 

such classes. 

The first part of the Corollary is obvious. The second follows from the fact that 

U,'s,  in which the 1 × 1 block is not in the same position, cannot be conjugate, 

because U, determines its unique chain of invariant subspaces of the n- 

dimensional space on which the matrices act. 

PROOF OF TtmOREM 6. This is about the same as the one for Theorem 5. In the 

same way we see that we may take S to be irreducible, and then that n = 2 or 3. 

For n = 2, we have chosen U2 to be the unique (up to conjugacy) soluble 

subgroup of maximal order, so let n = 3. Then 6(q - 1)3< I T31 < t U3[, so S is 

primitive and has order 3(q 3 -  1) or 216(q - I), while I U3(2)1 = 24, ] u~(3)l = 864, 

I u (5)l =9600. The possibility [SI = 2 1 6 ( q -  1) certainly does not occur for 

q = 2, where IGL(3,2)I = 168, and so IS I<IU~(q)I in all cases. 

THEOREM 8. Let S be a soluble subgroup of maximal order of SL(n, q). Except 
for q = 7, n = 2, there exists a soluble subgroup of maximal order in GL(n, q ), say 
S~, such that S = S~ fq SL(n,q).  The number of classes of such subgroups in 
SL(n,q)  is the same as in GL(n,q). 

PROOF. First, let S be reducible, so its elements have the form 

(A 0) 
X =  C B ' 

with A and B of sizes l and m, and l + m = n. Suppose that in the compound 

homomorphism X--~A ---~det A, S is mapped into a subgroup of order d of F*. 

Then in the homomorphism X ~ B - - ~ d e t B ,  S is mapped onto the same 

subgroup. Let V, denote a soluble subgroup of maximal order  of GL(n ,q )  (i.e. 

T. or U,), and note that 

[SL(n,q) n v. I = 11 v.  I. 
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If S maps onto the subgroups S~ and S,, of GL(I,q) and GL(m,q)  (by X - - ) A  

and X - * B ) ,  then IS~ :St n SL(/,q) I = d, and by induction 

I s, 1_<--4--d I v, I, 
- q - 1  

and similarly 

Isml  _llvol. 
(Here we assume q ¢  7; the case q = 7 will be discussed separately.) Let W be 

the subgroup of G L ( n , q )  consisting of all matrices of block form as X above, 

with A ~ $~ and B E $~. Then S C_ W, S = W n SL(n,q) (by maximality of S), 

] W : S I = d  and 

d 2 ,m I < d2 IWl=q'mls, llsml<----(q_l)2q v, ) I v,. (q _ 1)21Vn I, 

1 d 1 Isl=3 Iwl--<-q-lq - 1 1 V " l < l V " f l S L ( n ' q ) l ' =  

Thus (1/(q - 1))1 V.I is the maximal possible order for S, and we see that it is 

realized only when d = q - 1 and W = V., so S = V. n SL(n,q). 

Now let S be irreducible, so I SI < q~./4. For n _-> 5, and q _-> 4, we get 

IT. n SL(n,q) I = q(~)(q - 1)"-' > q(~)+3(.-,i/4> q~./n, 

while for q = 2,3 we have 

l U. n SL(n, q)l = q ' ~ ) ( q  - 1)"-~(q + 1) )~)--> q(.-)+(.-,),2 >q(.-'-~v2 > q9,,/4. 

Thus n - 4 for all q. 

If S C F* wr Sn, then 

I s I---- (q _1 1)(q- 1)"n!, 

since F* wr S. contains elements of all possible determinants, and we have 

already checked that 

ISI_-<~IlT. I for n =2,3 ,  

and this holds also for n = 4 (24(q - 1) 3 < q~(q -- 1)3). If S is imprimitive, it is still 

possible that n =4 ,  and S C_ TwrS2, for some TC_ GL(2,q). Then 

I S i_< 2(q2 _ 1)2(q2 _ q)2 = 2q2(q _ 1)4(q + 1)2 < q, (q  _ 1)3 = IT 4 n SL(4,q) I 

for q = 3. The case q = 2 needs no treatment, as SL(n,2)= GL(n,2). 



Vol. 55, 1986 SOLUBLE SUBGROUPS 171 

So, S is primitive. Then so is R = SZ(GL(n, q)), of order ] S I(q - 1)/(n, q - 1) 

and we apply Suprunenko's results. We have 

and we want 

ISl<ql _llVOl, 
so it suffices to show that n ]R [ < I V, I- The possible values for I R I were listed in 

the proof of Theorem 5, and we have to add to them, for n = 4, the possibility 

I Uf=2(q2-1).22.1Sp(2,2)l.  Also, for n =4  we have ISp(4,2)l rather than 
ISp(2,4)1, and this can be replaced by 72, the maximal order of a soluble 

subgroup of Sp(4,2)~-$6. We check the inequalities for each dimension. 
For n = 2, 4(q 2 -  1)< q ( q - l )  2 holds for q _-> 7, and 

2 ( q - 1 ) . 2 2 1 S p ( 2 , 2 ) l = 4 8 ( q - 1 ) < q ( q - 1 )  2 forq  =>8. 

The values q = 4, 5 are checked individually, using PSL(2,4) ~ PSL(2, 5) --- As, to 

show that S = SL(2,q) f) V2. Similarly for q = 3, where V, = GL(2,3). 
For n =3 ,  9 ( q 3 - 1 ) < q 3 ( q - 1 )  3 holds for q _->4, and 

3 ( q - 1 ) . 3 2 . l S p ( 2 , 3 ) l = 6 4 8 ( q - 1 ) < q 3 ( q - 1 )  3 forq  =>5. 

For q = 3 we can replace q~(q - 1) 3 by I V3] = 864, and the left hand sides by 

(n,q - 1)l R ] = I R ], so the inequalities still hold. For q = 4, the second inequal- 

ity is violated. However, this inequality corresponds to the case 

I R ]= ( q -  1).32.]Sp(2,3)] = 2 1 6 ( q -  1) = 648, 

and [S l>_[T~ASC(n ,q ) [=q3(q -1 ) z=576  holds only if [ S I = I R [ ,  which is 

impossible because 648 does not divide ISL(3,4)I = 60480. 
Finally, for n = 4, we want 16(q 4 -  1), 192(q 2 -  1) and 4608(q - 1) to be less 

than q6(q _ 1)4 and this is indeed true for all q > 3. 

Next, let S and T be two soluble subgroups of maximum order of SL(n,q), 

and write them as S = $1N SL(n,q), T = T, f3 SL(n,q). Then 

IS,: S I = IT,: T] = IOL(n,q):SL(n,q) l ,  

SAS, ,  TAT,  and S and T, as maximal soluble subgroups, are self-normalizing in 

SL(n,q). Therefore S, and T, are the normalizers of S and T in OL(n,q).  It 

follows that S and T are conjugate in SL(n,q) if and only if S~ and T~ are 

conjugate in GL(n,q).  
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The case q = 7 is truly exceptional in Theorem 8. Thus SL(2, 7), of order 336, 

has two classes of soluble subgroups of maximal order 48, while GL(2, 7) has only 

one such class of order 252, which intersects SL(2,7) in subgroups of order 42. 

These (well-known) facts follow from Theorems 5 and 6, remembering that 

PSL(2, 7) ---- GL(3, 2), the simple group of order 168. 

To deal with the case q =7,  n > 2  we note first that the two classes of 

subgroups of order 48 become one class in GL(2,7), and this means that the 

largest subgroup of GL(2,7) containing such a subgroup of order 48, which is its 

normalizer, has order 3.48 = 144. The proof of Theorem 8 needs modification of 

only one point to accomodate this case, namely, when invoking induction for a 
reducible S. There, if l = 2, we have to write I S~I--E_ d .  48 rather than 

Is, l<=qd- llv2l (=  d .42), 

but only if d < 3. If also m = 2, we check that 

ISl=< d .482"74-  3.482.74< 7 ~.63 = I T~f3 SL(4,7)], 

and, for any m, we check that 

1 d 1 .7~ 9 . 1SI - - -~ .d '48"  • 7'T'. 6" < g  "6,  

with n = m +2 and d =<3. This ends the proof. 
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